POTENTIAL OF UNMANNED AERIAL VEHICLES FOR AGRICULTURE
A REVIEW
DOI:
https://doi.org/10.32770/rbaos.vol31-8Keywords:
agriculture, Unmanned Aerial Vehicles (UAVs), review, potentialAbstract
In few years, agriculture drones emerge for monitoring, planting, spraying, and mapping to increase crop production and reduce labor. This review results show its significance and farmer's demand for agriculture. The UAV technologies enable farmer management based on measuring and observation based on real-time crop and livestock monitoring, significantly maximize their production. The farm drone consists of user-friendly software with interactive maps, and a global positioning system will improve production. It will support farmer for farming in efficient, effective, and economical ways.
Downloads
References
Natu, A. S., & Kulkarni, S. C. (2016). Adoption and utilization of drones for advanced precision farming:A review. International journal on recent and innovation trends in computing and communication,4(5), 563-565.
Anthony, D., Elbaum, S., Lorenz, A., & Detweiler, C. (2014, September). On crop height estimation with UAVs. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4805-4812). IEEE.
Albornoz, C., & Giraldo, L. F. (2017, October). Trajectory design for efficient crop irrigation with a UAV. In 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC) (pp. 1-6). IEEE.
Bah, M. D., Hafiane, A., & Canals, R. (2017, November). Weeds detection in UAV imagery using SLIC and the hough transform. In 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE.
Ballesteros, R., Ortega, J. F., Hernández, D., & Moreno, M. A. (2014). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precision Agriculture, 15(6), 579-592.
Bauer, M. E., & Cipra, J. E. (1973, March). Identification of agricultural crops by computer processing of ERTS MSS data. In Symposium on significant results obtained from the Earth Resources Technology Satellite-1 (Vol. 1, pp. 205-212).
Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote sensing, 6(11), 10395-10412.
Ben-Dor, E., Patkin, K., Banin, A., & Karnieli, A. (2002). Mapping of several soil properties using DAIS-7915 hyperspectral scanner data-a case study over clayey soils in Israel. International Journal of Remote Sensing, 23(6), 1043-1062.
Bendig, J., Bolten, A., & Bareth, G. (2012). Introducing a low-cost mini-UAV for thermal-and multispectral-imaging. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, 39, 345-349.
Cano, E., Horton, R., Liljegren, C., & Bulanon, D. M. (2017). Comparison of small unmanned aerial vehicles performance using image processing. Journal of Imaging, 3(1), 4.
Cajzek, R., & Klanšek, U. (2016). An unmanned aerial vehicle for multi-purpose tasks in construction industry. Journal of Applied Engineering Science, 14(2), 314-327.
Campbell, D. A. (1948). Preliminary aerial distribution trials with superphosphate and seed mixtures. New Zealand Journal of Science and Technology A, 30, 65-77.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological bulletin, 56(2), 81-105.
Capolupo, A., Pindozzi, S., Okello, C., & Boccia, L. (2014). Indirect field technology for detecting areas object of illegal spills harmful to human health: application of drones, photogrammetry and hydrological models. Geospatial health, S699-S707.
Chartzoulakis, K., & Bertaki, M. (2015). Sustainable water management in agriculture under climate change. Agriculture and Agricultural Science Procedia, 4, 88-98.
Christiansen, M. P., Laursen, M. S., Jørgensen, R. N., Skovsen, S., & Gislum, R. (2017). Designing and testing a UAV mapping system for agricultural field surveying. Sensors, 17(12), 2703.
Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of photogrammetry and remote sensing, 92, 79-97.
Costa, F., Ueyama, J., Braun T, Pessin G, Osorio F, Vargas P. (2012) The use of unmanned aerial vehicles and wireless sensor network in agricultural applications.”, IEEE conference on Geoscience and Remote Sensing Symposium (IGARSS-2012) 5045–5048.
Dos Santos Ferreira, A., Freitas, D. M., da Silva, G. G., Pistori, H., & Folhes, M. T. (2017). Weed detection in soybean crops using ConvNets. Computers and Electronics in Agriculture, 143, 314-324.
Elarab, M., Ticlavilca, A. M., Torres-Rua, A. F., Maslova, I., & McKee, M. (2015). Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 43, 32-42.
Everaerts, J. (2008). The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(2008), 1187-1192.
Frankelius, P., & Norrman, C. (2013). Uppfinningars betydelse för Sverige: hur kan den svenska innovationskraften utvecklas och tas tillvara bättre?. Vinnova.
Garre, P., & Harish, A. (2018, December). Autonomous agricultural pesticide spraying uav. In IOP Conference Series: Materials Science and Engineering (Vol. 455, No. 1, p. 012030). IOP Publishing.
Han, L., Yang, G., Yang, H., Xu, B., Li, Z., & Yang, X. (2018). Clustering field-based maize phenotyping of plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach. Frontiers in plant science, 9, 1638.
Huang, Y., Hoffmann, W. C., Lan, Y., Wu, W., & Fritz, B. K. (2009). Development of a spray system for an unmanned aerial vehicle platform. Applied Engineering in Agriculture, 25(6), 803-809.
Jung, J., Maeda, M., Chang, A., Landivar, J., Yeom, J., & McGinty, J. (2018). Unmanned aerial system assisted framework for the selection of high yielding cotton genotypes. Computers and Electronics in Agriculture, 152, 74-81.
Kerkech, M., Hafiane, A., & Canals, R. (2018). Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Computers and electronics in agriculture, 155, 237-243.
Maurya, P. (2015) “Hardware implementation of a flight control system for an unmanned aerial vehicle.” Retrieved 06 01, 2015, from Computer science and engineering: http://www.cse.iitk.ac.in/users/moona/students/Y2258.pdf.
Mogili, U. R., & Deepak, B. B. V. L. (2018). Review on application of drone systems in precision agriculture. Procedia computer science, 133, 502-509.
Montero, D., & Rueda, C. (2018, October). Detection of palm oil bud rot employing artificial vision. In IOP Conference Series: Materials Science and Engineering (Vol. 437, No. 1, p. 012004). IOP Publishing.
Mora, A., Santos, T., Łukasik, S., Silva, J., Falcão, A. J., Fonseca, J. M., & Ribeiro, R. A. (2017). Land cover classification from multispectral data using computational intelligence tools: A comparative study. Information, 8(4), 147.
Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering, 114(4), 358-371.
Marinello, F., Pezzuolo, A., Chiumenti, A., & Sartori, L. (2016). Technical analysis of unmanned aerial vehicles (drones) for agricultural applications. Engineering for Rural Development, 15, 870.
Martínez, J., Egea, G., Agüera, J., & Pérez-Ruiz, M. (2017). A cost-effective canopy temperature measurement system for precision agriculture: a case study on sugar beet. Precision Agriculture, 18(1), 95-110.
Norasma, C. Y. N., Fadzilah, M. A., Roslin, N. A., Zanariah, Z. W. N., Tarmidi, Z., & Candra, F. S. (2019, April). Unmanned Aerial Vehicle Applications In Agriculture. In IOP Conference Series: Materials Science and Engineering (Vol. 506, No. 1, p. 012063). IOP Publishing.
Probst, L., Pedersen, B., & Dakkak-Arnoux, L. (2019). Digital Transformation Monitor Drones in agriculture, European Commission, Directorate-General Internal Market, Industry, Entrepreneurship and SMEs.
Quebrajo, L., Perez-Ruiz, M., Pérez-Urrestarazu, L., Martínez, G., & Egea, G. (2018). Linking thermal imaging and soil remote sensing to enhance irrigation management of sugar beet. Biosystems Engineering, 165, 77-87.
Reger, M., Bauerdick, J., & Bernhardt, H. (2018). Drones in Agriculture: Current and future legal status in Germany, the EU, the USA and Japan. Landtechnik, 73(3), 62-79.
Saccon, P. (2018). Water for agriculture, irrigation management. Applied soil ecology, 123, 793-796.
Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., & Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 112-123.
Schnug, E., Panten, K., & Haneklaus, S. (1998). Sampling and nutrient recommendations‐the future. Communications in soil science and plant analysis, 29(11-14), 1455-1462.
Schawab K (2016). The Fourth Industrial Revolution: what it means, how to respond. Retrieved from Fourth Industrial Revolution: https://www.weforum.Org /agenda/2016/01/the-fourthindustrial-revolution-what-it-means-and-how-to-respond/
Tripicchio, P., Satler, M., Dabisias, G., Ruffaldi, E., & Avizzano, C. A. (2015, July). Towards smart farming and sustainable agriculture with drones. In 2015 International Conference on Intelligent Environments (pp. 140-143). IEEE.
Tsiamis, N., Efthymiou, L., & Tsagarakis, K. P. (2019). A Comparative Analysis of the Legislation Evolution for Drone Use in OECD Countries. Drones, 3(4), 75.
Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349.
Thapa, P. (2011). Potential and Applications of Unmanned Aerial Vehicles for Smart Agriculture: A.
Veroustraete, F. (2015). The rise of the drones in agriculture. EC agriculture, 2(2), 325-327.
Wahab, I., Hall, O., & Jirström, M. (2018). Remote sensing of yields: Application of uav imagery-derived ndvi for estimating maize vigor and yields in complex farming systems in sub-saharan africa. Drones, 2(3), 28.
Yao, L., Jiang, Y., Zhiyao, Z., Shuaishuai, Y., & Quan, Q. (2016, August). A pesticide spraying mission assignment performed by multi-quadcopters and its simulation platform establishment. In 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC) (pp. 1980-1985). IEEE.
Yamaha (2017). Retrieved from: http://rmax.yamaha-motor.com.au/history.
Zhao, T., Yang, Y., Niu, H., Wang, D., & Chen, Y. (2018, October). Comparing U-Net convolutional network with mask R-CNN in the performances of pomegranate tree canopy segmentation. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII (Vol. 10780, p. 107801J). International Society for Optics and Photonics.
Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision agriculture, 13(6), 693-712.
Zhang, Y., Wang, L., & Duan, Y. (2016). Agricultural information dissemination using ICTs: A review and analysis of information dissemination models in China. Information processing in agriculture, 3(1), 17-29.
Published
How to Cite
Issue
Section
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Review of Behavioral Aspect in Organizations and Society is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License